Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 126
1.
Diabetes Care ; 2024 Mar 08.
Article En | MEDLINE | ID: mdl-38457639

OBJECTIVE: To assess self-reported awareness of diabetic retinopathy (DR) and concordance of eye examination follow-up compared with findings from concurrent retinal images. RESEARCH DESIGN AND METHODS: We conducted a prospective observational 10-year study of 26,876 consecutive patients with diabetes who underwent retinal imaging during an endocrinology visit. Awareness and concordance were evaluated using questionnaires and retinal imaging. RESULTS: Awareness information and gradable images were available in 25,360 patients (94.3%). Severity of DR by imaging was as follows: no DR (n = 14,317; 56.5%), mild DR (n = 6,805; 26.8%), or vision-threatening DR (vtDR; n = 4,238; 16.7%). In the no, mild, and vtDR groups, 96.7%, 88.5%, and 54.9% of patients, respectively, reported being unaware of any prior DR. When DR was present, reporting no prior DR was associated with shorter diabetes duration, milder DR, last eye examination >1 year before, no dilation, no scheduled appointment, and less specialized provider (all P < 0.001). Among patients with vtDR, 41.2%, 58.1%, and 64.2% did not report being aware of any DR and follow-up was concordant with current DR severity in 66.7%, 41.3%, and 25.4% (P < 0.001) of patients when prior examination was performed by a retinal specialist, nonretinal ophthalmologist, or optometrist (P < 0.001), respectively. CONCLUSIONS: Substantial discrepancies exist between DR presence, patient awareness, and concordance of follow-up across all DR severity levels. These discrepancies are present across all eye care provider types, with the magnitude influenced by provider type. Therefore, patient self-report should not be relied upon to reflect DR status. Modification of medical care and education models may be necessary to enhance retention of ophthalmic knowledge in patients with diabetes and ensure accurate communication between all health care providers.

2.
JAMA Ophthalmol ; 142(3): 171-177, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38329765

Importance: Machine learning (ML) algorithms have the potential to identify eyes with early diabetic retinopathy (DR) at increased risk for disease progression. Objective: To create and validate automated ML models (autoML) for DR progression from ultra-widefield (UWF) retinal images. Design, Setting and Participants: Deidentified UWF images with mild or moderate nonproliferative DR (NPDR) with 3 years of longitudinal follow-up retinal imaging or evidence of progression within 3 years were used to develop automated ML models for predicting DR progression in UWF images. All images were collected from a tertiary diabetes-specific medical center retinal image dataset. Data were collected from July to September 2022. Exposure: Automated ML models were generated from baseline on-axis 200° UWF retinal images. Baseline retinal images were labeled for progression based on centralized reading center evaluation of baseline and follow-up images according to the clinical Early Treatment Diabetic Retinopathy Study severity scale. Images for model development were split 8-1-1 for training, optimization, and testing to detect 1 or more steps of DR progression. Validation was performed using a 328-image set from the same patient population not used in model development. Main Outcomes and Measures: Area under the precision-recall curve (AUPRC), sensitivity, specificity, and accuracy. Results: A total of 1179 deidentified UWF images with mild (380 [32.2%]) or moderate (799 [67.8%]) NPDR were included. DR progression was present in half of the training set (590 of 1179 [50.0%]). The model's AUPRC was 0.717 for baseline mild NPDR and 0.863 for moderate NPDR. On the validation set for eyes with mild NPDR, sensitivity was 0.72 (95% CI, 0.57-0.83), specificity was 0.63 (95% CI, 0.57-0.69), prevalence was 0.15 (95% CI, 0.12-0.20), and accuracy was 64.3%; for eyes with moderate NPDR, sensitivity was 0.80 (95% CI, 0.70-0.87), specificity was 0.72 (95% CI, 0.66-0.76), prevalence was 0.22 (95% CI, 0.19-0.27), and accuracy was 73.8%. In the validation set, 6 of 9 eyes (75%) with mild NPDR and 35 of 41 eyes (85%) with moderate NPDR progressed 2 steps or more were identified. All 4 eyes with mild NPDR that progressed within 6 months and 1 year were identified, and 8 of 9 (89%) and 17 of 20 (85%) with moderate NPDR that progressed within 6 months and 1 year, respectively, were identified. Conclusions and Relevance: This study demonstrates the accuracy and feasibility of automated ML models for identifying DR progression developed using UWF images, especially for prediction of 2-step or greater DR progression within 1 year. Potentially, the use of ML algorithms may refine the risk of disease progression and identify those at highest short-term risk, thus reducing costs and improving vision-related outcomes.


Diabetes Mellitus , Diabetic Retinopathy , Humans , Diabetic Retinopathy/physiopathology , Eye/physiopathology , Disease Progression
3.
Transl Vis Sci Technol ; 12(11): 33, 2023 11 01.
Article En | MEDLINE | ID: mdl-38015167

The Mary Tyler Moore Vision Initiative Diabetic Retinal Disease (DRD) Clinical Endpoints Workshop was held on October 22, 2022 to accelerate progress toward establishment of useful clinical and research endpoints and development of new therapeutics that have important relevance across the full spectrum of DRD pathology. More than 90 patient representatives, clinicians, scientists, funding and regulatory agencies, diagnostic, therapeutic and biotech industry representatives discussed the needs for new diagnostic and therapeutic approaches to prevent and restore retinal neurovascular unit integrity. Phase I of the MTM Vision Initiative plans, notably updating the DRD staging system and severity scale, establishing a human ocular biorepository and resource, and clinical endpoints and biomarker development and validation, was emphasized.


Diabetes Mellitus , Diabetic Retinopathy , Humans , Diabetic Retinopathy/diagnosis , Diabetic Retinopathy/therapy , Retina
4.
Retina ; 43(11): 1928-1935, 2023 11 01.
Article En | MEDLINE | ID: mdl-37871272

PURPOSE: To determine the effect of combined macular spectral-domain optical coherence tomography (SD-OCT) and ultrawide field retinal imaging (UWFI) within a telemedicine program. METHODS: Comparative cohort study of consecutive patients with both UWFI and SD-OCT. Ultrawide field retinal imaging and SD-OOCT were independently evaluated for diabetic macular edema (DME) and nondiabetic macular abnormality. Sensitivity and specificity were calculated with SD-OCT as the gold standard. RESULTS: Four hundred twenty-two eyes from 211 diabetic patients were evaluated. Diabetic macular edema severity by UWFI was as follows: no DME 93.4%, noncenter involved DME (nonciDME) 5.1%, ciDME 0.7%, ungradable DME 0.7%. SD-OCT was ungradable in 0.5%. Macular abnormality was identified in 34 (8.1%) eyes by UWFI and in 44 (10.4%) eyes by SD-OCT. Diabetic macular edema represented only 38.6% of referable macular abnormality identified by SD-OCT imaging. Sensitivity/specificity of UWFI compared with SD-OCT was 59%/96% for DME and 33%/99% for ciDME. Sensitivity/specificity of UWFI compared with SDOCT was 3%/98% for epiretinal membrane. CONCLUSION: Addition of SD-OCT increased the identification of macular abnormality by 29.4%. More than 58.3% of the eyes believed to have any DME on UWF imaging alone were false-positives by SD-OCT. The integration of SD-OCT with UWFI markedly increased detection and reduced false-positive assessments of DME and macular abnormality in a teleophthalmology program.


Diabetes Mellitus , Diabetic Retinopathy , Macular Edema , Ophthalmology , Telemedicine , Humans , Diabetic Retinopathy/diagnosis , Tomography, Optical Coherence/methods , Macular Edema/diagnostic imaging , Cohort Studies , Retrospective Studies
5.
Ophthalmol Retina ; 7(8): 703-712, 2023 08.
Article En | MEDLINE | ID: mdl-36924893

PURPOSE: To create and validate code-free automated deep learning models (AutoML) for diabetic retinopathy (DR) classification from handheld retinal images. DESIGN: Prospective development and validation of AutoML models for DR image classification. PARTICIPANTS: A total of 17 829 deidentified retinal images from 3566 eyes with diabetes, acquired using handheld retinal cameras in a community-based DR screening program. METHODS: AutoML models were generated based on previously acquired 5-field (macula-centered, disc-centered, superior, inferior, and temporal macula) handheld retinal images. Each individual image was labeled using the International DR and diabetic macular edema (DME) Classification Scale by 4 certified graders at a centralized reading center under oversight by a senior retina specialist. Images for model development were split 8-1-1 for training, optimization, and testing to detect referable DR ([refDR], defined as moderate nonproliferative DR or worse or any level of DME). Internal validation was performed using a published image set from the same patient population (N = 450 images from 225 eyes). External validation was performed using a publicly available retinal imaging data set from the Asia Pacific Tele-Ophthalmology Society (N = 3662 images). MAIN OUTCOME MEASURES: Area under the precision-recall curve (AUPRC), sensitivity (SN), specificity (SP), positive predictive value (PPV), negative predictive value (NPV), accuracy, and F1 scores. RESULTS: Referable DR was present in 17.3%, 39.1%, and 48.0% of the training set, internal validation, and external validation sets, respectively. The model's AUPRC was 0.995 with a precision and recall of 97% using a score threshold of 0.5. Internal validation showed that SN, SP, PPV, NPV, accuracy, and F1 scores were 0.96 (95% confidence interval [CI], 0.884-0.99), 0.98 (95% CI, 0.937-0.995), 0.96 (95% CI, 0.884-0.99), 0.98 (95% CI, 0.937-0.995), 0.97, and 0.96, respectively. External validation showed that SN, SP, PPV, NPV, accuracy, and F1 scores were 0.94 (95% CI, 0.929-0.951), 0.97 (95% CI, 0.957-0.974), 0.96 (95% CI, 0.952-0.971), 0.95 (95% CI, 0.935-0.956), 0.97, and 0.96, respectively. CONCLUSIONS: This study demonstrates the accuracy and feasibility of code-free AutoML models for identifying refDR developed using handheld retinal imaging in a community-based screening program. Potentially, the use of AutoML may increase access to machine learning models that may be adapted for specific programs that are guided by the clinical need to rapidly address disparities in health care delivery. FINANCIAL DISCLOSURE(S): Proprietary or commercial disclosure may be found after the references.


Diabetes Mellitus , Diabetic Retinopathy , Macular Edema , Humans , Diabetic Retinopathy/diagnosis , Prospective Studies , Macular Edema/diagnosis , Macular Edema/etiology , Retina/diagnostic imaging , Machine Learning
6.
Transl Vis Sci Technol ; 12(2): 7, 2023 02 01.
Article En | MEDLINE | ID: mdl-36745439

Purpose: To evaluate the ability of ultrawide field (UWF)-directed optical coherence tomography (OCT) to detect retinal neovascularization in eyes thought to have severe nonproliferative diabetic retinopathy (NPDR). Methods: Retrospective study of 20 consecutive patients diagnosed with severe NPDR by clinical examination. All patients underwent UWF color imaging (UWF-CI) and UWF-directed OCT following a prespecified imaging protocol to assess the mid periphery, 15/32 (46.9%) eyes underwent UWF-fluorescein angiography (FA). On OCT, new vessels elsewhere (NVE) were defined when vessels breached the internal limiting membrane. Results: A total of 32 eyes of 20 patients were evaluated. Of the 45 suspected areas of intraretinal microvascular abnormalities (IRMA) on UWF-CI, 38 (84.4%) were imaged by UWF-directed OCT, and 9/38 IRMA (23.7%) were NVE by OCT. Furthermore, UWF-directed OCT identified seven additional NVE in three eyes not seen on UWF-CI. This resulted in a change in diabetic retinopathy (DR) severity from severe NPDR to PDR in 8/32 eyes (25.0%). Among the 46.9% of eyes with UWF-FA, UWF-directed OCT agreed with the UWF-FA findings in 80% (12/15 eyes), missing only one peripheral NVE outside the UWF-OCT scanning area. Two eyes had subtle NVD that were not evident on UWF-directed OCT. Conclusions: This pilot study suggests that UWF-directed OCT may help differentiate IRMA from NVE and detect unrecognized NVE in eyes with advanced DR in a clinical practice setting. Future prospective studies in larger cohorts could determine whether this rapid and noninvasive method is clinically relevant in determining NVE presence or retinopathy progression and complication risk. Translational Relevance: UWF-directed OCT may offer a noninvasive alternative to detect NVE in eyes with DR.


Diabetes Mellitus , Diabetic Retinopathy , Retinal Diseases , Humans , Diabetic Retinopathy/diagnostic imaging , Tomography, Optical Coherence/methods , Retinal Vessels , Prospective Studies , Retrospective Studies , Pilot Projects
7.
Br J Ophthalmol ; 107(4): 534-539, 2023 04.
Article En | MEDLINE | ID: mdl-36669774

PURPOSE: To compare Early Treatment Diabetic Retinopathy Study (ETDRS) diabetic retinopathy (DR) severity on ultrawide field (UWF) colour imaging (CI) and UWF fluorescein angiography (FA). DESIGN: Cross-sectional retrospective review. SUBJECTS: Patients with diabetes mellitus and at least mild non-proliferative DR on UWF-CI. METHODS: UWF-CI and UWF-FA images acquired within 1 month of each other were evaluated independently using ETDRS DR Severity Scale (DRSS) for colour photography adapted for UWF-CI and UWF-FA. Extent of non-perfusion (NP, mm2) was determined from UWF-FA images. MAIN OUTCOME MEASURES: Agreement rate between DRSS on UWF-CI and UWF-FA. RESULTS: Images from 218 eyes of 137 patients with diabetes were evaluated. Agreement rate for DRSS between UWF-CI and UWF-FA was moderate to substantial (K=0.46, Kw=0.65). Over-all, DRSS was worse in 73 (33.5%) eyes on UWF-FA and in 16 (7.3%) on UWF-CI. Compared to UWF-CI, UWF-FA identified more severe DRSS in 26.5% (1 step) and 7.34% (≥2 steps) of eyes. DRSS was worse than UWF-FA in 56 (51.4%) in early DR (ETDRS levels 20-47, N=109) and 17 (15.6%) in eyes with severe DR (53 and higher, N=109). In this cohort, the extent of NP significantly increased as eyes approach moderate non-proliferative DR (levels 43-47, p=0.0065). CONCLUSION: When evaluating UWF-FA images using the ETDRS colour severity scale, DRSS is graded as more severe in a substantial number of eyes than when evaluating UWF-CI. It is uncertain how the DRSS levels using UWF-FA translate to clinical outcomes, but the additional lesions detected might provide added prognostic value. These and other recent data emphasise the need of obtaining outcome data based on UWF-FA and the potential need to develop DRSS specifically tailored for UWF-FA images.


Diabetes Mellitus , Diabetic Retinopathy , Humans , Diabetic Retinopathy/diagnosis , Cross-Sectional Studies , Color , Fluorescein Angiography , Photography/methods , Fluoresceins
8.
JAMA Ophthalmol ; 140(10): 946-954, 2022 10 01.
Article En | MEDLINE | ID: mdl-35980608

Importance: Ultra-widefield (UWF) imaging improves the ability to identify peripheral diabetic retinopathy (DR) lesions compared with standard imaging. Whether detection of predominantly peripheral lesions (PPLs) better predicts rates of disease worsening over time is unknown. Objective: To determine whether PPLs identified on UWF imaging are associated with increased disease worsening beyond the risk associated with baseline Early Treatment Diabetic Retinopathy Study (ETDRS) Diabetic Retinopathy Severity Scale (DRSS) score. Design, Setting, and Participants: This cohort study was a prospective, multicenter, longitudinal observational study conducted at 37 US and Canadian sites with 388 participants enrolled between February and December 2015. At baseline and annually through 4 years, 200° UWF-color images were obtained and graded for DRSS at a reading center. Baseline UWF-color and UWF-fluorescein angiography (FA) images were evaluated for the presence of PPL. Data were analyzed from May 2020 to June 2022. Interventions: Treatment of DR or diabetic macular edema was at investigator discretion. Main Outcomes and Measures: Predominantly peripheral lesions were defined as DR lesions with a greater extent outside vs inside the 7 standard ETDRS fields. Primary outcome was disease worsening defined as worsening 2 steps or more on the DRSS or receipt of DR treatment. Analyses were adjusted for baseline DRSS score and correlation between 2 study eyes of the same participant. Results: Data for 544 study eyes with nonproliferative DR (NPDR) were analyzed (182 [50%] female participants; median age, 62 years; 68% White). The 4-year disease worsening rates were 45% for eyes with baseline mild NPDR, 40% for moderate NPDR, 26% for moderately severe NPDR, and 43% for severe NPDR. Disease worsening was not associated with color PPL at baseline (present vs absent: 38% vs 43%; HR, 0.78; 95% CI, 0.57-1.08; P = .13) but was associated with FA PPL at baseline (present vs absent: 50% vs 31%; HR, 1.72; 95% CI, 1.25-2.36; P < .001). Conclusions and Relevance: Although no association was identified with color PPL, presence of FA PPL was associated with greater risk of disease worsening over 4 years, independent of baseline DRSS score. These results suggest that use of UWF-FA to evaluate retinas peripheral to standard ETDRS fields may improve the ability to predict disease worsening in NPDR eyes. These findings support use of UWF-FA for future DR staging systems and clinical care to more accurately determine prognosis in NPDR eyes.


Diabetes Mellitus , Diabetic Retinopathy , Macular Edema , Humans , Female , Middle Aged , Male , Diabetic Retinopathy/physiopathology , Macular Edema/drug therapy , Prospective Studies , Cohort Studies , Canada/epidemiology , Fluorescein Angiography/methods
9.
JAMA Ophthalmol ; 140(10): 936-945, 2022 10 01.
Article En | MEDLINE | ID: mdl-35980610

Importance: Presence of predominantly peripheral diabetic retinopathy (DR) lesions on ultra-widefield fluorescein angiography (UWF-FA) was associated with greater risk of DR worsening or treatment over 4 years. Whether baseline retinal nonperfusion assessment is additionally predictive of DR disease worsening is unclear. Objective: To assess whether the extent and location of retinal nonperfusion identified on UWF-FA are associated with worsening in Diabetic Retinopathy Severity Scale (DRSS) score or DR treatment over time. Design, Setting, and Participants: This cohort study was a prospective, multicenter, longitudinal observational study with data for 508 eyes with nonproliferative DR and gradable nonperfusion on UWF-FA at baseline. All images were graded at a centralized reading center; 200° ultra-widefield (UWF) color images were graded for DR at baseline and annually for 4 years. Baseline 200° UWF-FA images were graded for nonperfused area, nonperfusion index (NPI), and presence of predominantly peripheral lesions on UWF-FA (FA PPL). Interventions: Treatment of DR or diabetic macular edema was at investigator discretion. Main Outcomes and Measures: Association of baseline UWF-FA nonperfusion extent with disease worsening, defined as either 2 or more steps of DRSS worsening within Early Treatment Diabetic Retinopathy Study fields on UWF-color images or receipt of DR treatment. Results: After adjusting for baseline DRSS, the risk of disease worsening over 4 years was higher in eyes with greater overall NPI (hazard ratio [HR] for 0.1-unit increase, 1.11; 95% CI, 1.02-1.21; P = .02) and NPI within the posterior pole (HR for 0.1-unit increase, 1.35; 95% CI, 1.17-1.56; P < .001) and midperiphery (HR for 0.1-unit increase, 1.08; 95% CI, 1.00-1.16; P = .04). In a multivariable analysis adjusting for baseline DRSS score and baseline systemic risk factors, greater NPI (HR, 1.11; 95% CI, 1.02-1.22; P = .02) and presence of FA PPL (HR, 1.89; 95% CI, 1.35-2.65; P < .001) remained associated with disease worsening. Conclusions and Relevance: This 4-year longitudinal study has demonstrated that both greater baseline retinal nonperfusion and FA PPL on UWF-FA are associated with higher risk of disease worsening, even after adjusting for baseline DRSS score and known systemic risk. These associations between disease worsening and retinal nonperfusion and FA PPL support the increased use of UWF-FA to complement color fundus photography in future efforts for DR prognosis, clinical care, and research.


Diabetes Mellitus , Diabetic Retinopathy , Macular Edema , Humans , Diabetic Retinopathy/drug therapy , Fluorescein Angiography/methods , Macular Edema/drug therapy , Retinal Vessels/pathology , Prospective Studies , Cohort Studies , Longitudinal Studies , Photography/methods , Diabetes Mellitus/physiopathology
10.
JAMA Ophthalmol ; 140(4): 421-425, 2022 04 01.
Article En | MEDLINE | ID: mdl-35201258

IMPORTANCE: Methods that increase visible retinal area (VRA; measured in millimeters squared) may improve identification of diabetic retinopathy (DR) lesions. OBJECTIVE: To evaluate the association of dilation and manual eyelid lifting (MLL) with VRA on ultra-widefield imaging (UWFI) and the association of VRA with grading of DR severity and detection of predominantly peripheral lesions (PPLs). DESIGN, SETTING, AND PARTICIPANTS: Retrospective, comparative case-control study at the Joslin Diabetes Center, Boston, Massachusetts. Nonmydriatic UWFI with MLL was acquired from a DR teleophthalmology program (Joslin Vision Network [JVN]). A second cohort of mydriatic UWFI was acquired at an academic retina practice (Beetham Eye Institute [BEI]) from November 6, 2017, to November 6, 2018, and with MLL thereafter until November 6, 2019. Fully automated algorithms determined VRA and hemorrhage and/or microaneurysm (HMA) counts. Predominantly peripheral lesions and HMAs were defined as present when at least 1 field had greater HMA number in the peripheral retina than within the corresponding Early Treatment Diabetic Retinopathy Study field. Participants included 3014 consecutive patients (5919 eyes) undergoing retinal imaging at JVN and BEI. EXPOSURES: Dilation and MLL performed at the time of UWFI. MAIN OUTCOMES AND MEASURES: Visible retinal area, DR severity, and presence of PPLs. RESULTS: Of the 3014 participants, mean (SD) age was 56.1 (14.5) years, 1302 (43.2%) were female, 2450 (81.3%) were White, and mean (SD) diabetes duration was 15.9 (11.4) years. All images from 5919 eyes with UWFI were analyzed. Mean (SD) VRA was 665.1 (167.6) mm2 for all eyes (theoretical maximal VRA, 923.9 mm2), 550.8 (240.7) mm2 for nonmydriatic JVN with MLL (1418 eyes [24.0%]), 688.1 (119.9) mm2 for mydriatic BEI images (3650 eyes [61.7%]), and 757.0 (69.7) mm2 for mydriatic and MLL BEI images (851 eyes [14.4%]). Dilation increased VRA by 25% (P < .001) and MLL increased VRA an additional 10% (P < .001). Nonmydriatic MLL increased VRA by 11.0%. With MLL, HMA counts in UWFI fields increased by 41.7% (from 4.8 to 6.8; P < .001). Visible retinal area was moderately associated with increasing PPL-HMA overall and in each cohort (all, r = 0.33; BEI, r = 0.29; JVN, r = 0.36; P < .001). In JVN images, increasing VRA was associated with more PPL-HMA (quartile 1 [Q1], 23.7%; Q2, 45.8%; Q3, 60.6%; and Q4, 69.2%; P < .001). CONCLUSIONS AND RELEVANCE: Using fully automated VRA and HMA detection algorithms, pupillary dilation and eyelid lifting were shown to substantially increase VRA and PLL-HMA detection. Given the importance of HMA and PPL for determining risk of DR progression, these findings emphasize the importance of maximizing VRA for optimal risk assessment in clinical trials and teleophthalmology programs.


Diabetes Mellitus , Diabetic Retinopathy , Microaneurysm , Ophthalmology , Telemedicine , Case-Control Studies , Diabetic Retinopathy/diagnosis , Diabetic Retinopathy/pathology , Eyelids/pathology , Female , Humans , Male , Middle Aged , Mydriatics , Retina/pathology , Retrospective Studies
11.
J Clin Med ; 10(15)2021 Jul 27.
Article En | MEDLINE | ID: mdl-34362084

Ultrawide field imaging (UWF) has allowed the visualization of a significantly greater area of the retina than previous standard approaches. In diabetic retinopathy (DR), significantly more lesions are seen on UWF imaging compared to the seven-standard ETDRS fields. In addition, some eyes have lesions that are located predominantly in the peripheral retina that are associated with an increased risk of DR progression. The current DR severity scales are still largely based on clinically visible retinal microvascular lesions and do not incorporate retinal periphery, neuroretinal, or pathophysiologic changes. Thus, current scales are not well suited for documenting progression or regression in eyes with very early or advanced DR, nor in the setting of vascular endothelial growth factor inhibitors (antiVEGF). In addition, the categorical system is highly subjective, and grading is variable between different graders based on experience level and training background. Recently, there have been efforts to quantify DR lesions on UWF imaging in an attempt to generate objective metrics for classification, disease prognostication and prediction of treatment response. The purpose of this review is to examine current quantitative metrics derived from UWF fluorescein angiograms and UWF color imaging to determine their feasibility in any potential future DR classification.

12.
Transl Vis Sci Technol ; 10(7): 6, 2021 06 01.
Article En | MEDLINE | ID: mdl-34100926

Purpose: The purpose of this study was to determine factors affecting predominantly peripheral lesion (PPL) grading, such as qualitative versus quantitative assessment, device type, and severity of diabetic retinopathy (DR) in ultrawide field color images (UWF-CIs). Methods: Patients with DR had UWF-CI qualitatively graded for PPL using standardized techniques and had hemorrhages/microaneurysms (H/Mas) individually annotated for quantitative PPL grading on two different ultrawide field devices. Results: Among 791 eyes of 481 patients, 38.2% had mild nonproliferative DR (NPDR), 34.7% had moderate NPDR, and 27.1% had severe NPDR to proliferative DR (PDR). The overall agreement between qualitative and quantitative PPL grading was moderate (ĸ = 0.423, P < 0.001). Agreement rates were fair in eyes with mild NPDR (ĸ = 0.336, P < 0.001) but moderate in eyes with moderate NPDR (ĸ = 0.525, P < 0.001) and severe NPDR-PDR (ĸ = 0.409, P < 0.001). Increasing thresholds for quantitative PPL determination improved agreement rates, with peak agreements at H/Ma count differences of six for mild NPDR, five for moderate NPDR, and nine for severe NPDR-PDR. Based on ultrawide field device type (California = 412 eyes vs. 200Tx = 379 eyes), agreement between qualitative and quantitative PPL grading was moderate for all DR severities in both devices (ĸ = 0.369-0.526, P < 0.001) except for mild NPDR on the 200Tx, which had poor agreement (ĸ = 0.055, P = 0.478). Conclusions: Determination of PPL varies between standard qualitative and quantitative grading and is dependent on NPDR severity, device type, and magnitude of lesion differences used for quantitative assessment. Translational Relevance: Prior UWF studies have not accounted for imaging and grading factors that affect PPL, such factors need to be reviewed when assessing thresholds for DR progression rates.


Diabetic Retinopathy , Microaneurysm , Diabetic Retinopathy/diagnosis , Eye , Humans , Severity of Illness Index
13.
Ophthalmol Retina ; 5(6): 571-579, 2021 06.
Article En | MEDLINE | ID: mdl-32927151

PURPOSE: To evaluate the association of retinal nonperfusion and diabetic retinopathy (DR) severity with location of vascular caliber measurement using ultrawide field (UWF) imaging. DESIGN: Retrospective image review. PARTICIPANTS: Adults with diabetes mellitus. METHODS: All images from subjects with same-day UWF fluorescein angiography (FA) and color imaging were evaluated. Predominantly peripheral lesions (PPL) and DR severity were graded from UWF color images. Nonperfusion was quantified using UWF-FA in defined retinal regions [posterior pole (PP), mid-periphery (MP), far-periphery (FP)]. Retinal vessel calibers were measured at an optic disc centered inner and outer zone. MAIN OUTCOME MEASURES: Nonperfusion index (NPI) in the PP, MP and FP. Mean arteriole and venule diameter in the inner and outer zones. RESULTS: Two hundred eighty-five eyes of 193 patients (24.9% mild nonproliferative DR [NPDR], 22.8% moderate NPDR, 37.5% severe NPDR and 14.7% proliferative DR [PDR]) were reviewed. No significant associations between inner zone arteriolar diameter and retinal NPI overall or in any retinal region. In the outer zone, eyes with thinnest arteriolar calibers (quartile 1) were associated with a 1.7- to 2.4-fold nonperfusion increase across all retinal regions compared to the remaining eyes (P = 0.002 [PP] to 0.048 [FP]). In the outer zone, the percentage of eyes in the thinnest quartile of retinal arteriolar diameter increased with worsening DR severity (mild NPDR: 10% vs PDR: 31%, P = 0.007). This association was not observed when measured within the inner zone (P = 0.129). All venular caliber associations were not statistically significant when corrected for potentially confounding factors. Thinner outer zone retinal arteriolar caliber (quartile 1) was more common in eyes with PPL compared to eyes without PPL (34.1% vs 20.8%, P = 0.017) as were thicker outer venular calibers (quartile 4) (33% vs 21.3%, P = 0.036). Presence of PPL was associated with thinner outer zone arteriolar caliber (109.7 ± 26.5µm vs 123.0 ± 29.5µm, P = 0.001). CONCLUSIONS: The association of vascular caliber with nonperfusion and DR severity differs based upon the retinal location at which vascular caliber is measured. Peripheral arterial narrowing is associated with increasing nonperfusion, worsening DR severity and presence of PPL. In contrast, inner zone retinal arteriolar caliber is not associated with these findings.


Diabetic Retinopathy/diagnosis , Fluorescein Angiography/methods , Retinal Vessels/diagnostic imaging , Tomography, Optical Coherence/methods , Diabetic Retinopathy/physiopathology , Female , Fundus Oculi , Humans , Male , Middle Aged , Retrospective Studies , Severity of Illness Index
15.
Ophthalmology ; 128(4): 554-560, 2021 04.
Article En | MEDLINE | ID: mdl-32941962

PURPOSE: To determine the relationship between refractive error and diabetic retinopathy (DR). DESIGN: Clinical trial. PARTICIPANTS: Type I diabetes individuals with serial refractive error and DR stage measurements over 30 years in the Diabetes Control and Complications Trial (DCCT) and Epidemiology of Diabetes Interventions and Complications (EDIC) follow-up study. METHODS: Stage of DR was measured every 6 months from standard fundus photographs, and refractive error was measured annually during the 6.5 years of DCCT; then, both were staggered every fourth year during EDIC with the full cohort measured at EDIC years 4 and 10. Outcomes of DR were 2- or 3-step progression, presence of proliferative DR (PDR), clinically significant macular edema (CSME), diabetic macular edema (DME), or ocular surgery. Myopia, emmetropia, and hyperopia were defined as a spherical equivalent of ≤-0.5, >-0.5 and <0.5, and ≥0.5, respectively. MAIN OUTCOME MEASURES: For each outcome separately, Cox proportional hazard (PH) models assessed the association between the refractive error status and the subsequent risk of that outcome, both without and with adjustment for potential risk factors. RESULTS: Hyperopia was associated with a higher risk of 2-step progression (hazard ratio [HR], 1.29; 95% confidence interval [CI], 1.05-1.59), 3-step progression (HR, 1.35; 95% CI, 1.05-1.73), and PDR (HR, 1.40; 95% CI, 1.02-1.92) compared with emmetropia in unadjusted models. These associations remained significant after adjustment for DCCT treatment group, cohort, age, sex, smoking, duration of diabetes, systolic and diastolic blood pressures, pulse, low-density lipoprotein, high-density lipoprotein, triglycerides, albumin excretion rate, and DCCT/EDIC mean updated hemoglobin A1c (HbA1c) (2-step progression: HR, 1.28; 95% CI, 1.03-1.58; 3-step progression: HR, 1.30; 95% CI, 1.00-1.68; PDR: HR, 1.38; 95% CI, 1.00-1.90). Myopia was not associated with any of the 5 DR outcomes in the unadjusted models and only marginally associated with 2-step progression (HR, 1.11; 95% CI, 1.00-1.24) in the adjusted models. CONCLUSIONS: Myopia is not associated with DR progression risk. Hyperopia is an independent risk factor for 2-step and 3-step DR progression and PDR.


Diabetes Mellitus, Type 1/physiopathology , Diabetic Retinopathy/physiopathology , Hyperopia/physiopathology , Myopia/physiopathology , Adult , Blood Glucose/metabolism , Blood Pressure , Diabetes Mellitus, Type 1/diagnosis , Diabetes Mellitus, Type 1/etiology , Diabetic Retinopathy/diagnosis , Diabetic Retinopathy/etiology , Disease Progression , Female , Follow-Up Studies , Glycated Hemoglobin/metabolism , Humans , Macular Edema/diagnosis , Macular Edema/etiology , Macular Edema/physiopathology , Male , Middle Aged , Proportional Hazards Models , Risk Factors
16.
JAMA Ophthalmol ; 138(12): 1291-1297, 2020 12 01.
Article En | MEDLINE | ID: mdl-33119083

Importance: Studies have not yet determined whether the distribution of lesions in the retinal periphery alters the association between the severity of diabetic retinopathy (DR) and macular vessel density. Objective: To evaluate the association of DR lesion distribution with optical coherence tomography angiography (OCTA) metrics and DR severity. Design, Setting, and Participants: This cross-sectional observational study was conducted at a tertiary care center for diabetic eye disease among 225 patients with type 1 or 2 diabetes who had undergone imaging between February 15, 2016, and December 31, 2019. Exposures: Optical coherence tomography angiography 3 × 3-mm macular scans and ultra-widefield color imaging. Main Outcomes and Measures: Optical coherence tomography angiography vessel density in the superficial capillary plexus, intermediate capillary plexus, and deep capillary plexus and choriocapillaris flow density. The severity of DR and the predominantly peripheral lesions (PPL) were evaluated from ultra-widefield color imaging. Results: The study evaluated 352 eyes (225 patients; 125 men [55.6%]; mean [SD] age, 52.1 [15.1] years), of which 183 eyes (52.0%) had mild nonproliferative diabetic retinopathy (NPDR), 71 eyes (20.2%) had moderate NPDR, and 98 eyes (27.8%) had severe NPDR or proliferative diabetic retinopathy (PDR). In eyes with no PPL (209 [59.4%]), the mean (SD) vessel density in the superficial capillary plexus (mild NPDR, 38.1% [4.7%]; moderate NPDR, 36.4% [4.6%]; severe NPDR or PDR, 34.1% [4.1%]; P < .001) and the deep capillary plexus (mild NPDR, 45.8% [3.0%]; moderate NPDR, 45.8% [2.2%]; severe NPDR or PDR, 44.5% [1.9%]; P = .002), as well as the mean (SD) choriocapillaris flow density (mild NPDR, 69.7% [6.2%]; moderate NPDR, 67.6% [5.6%]; severe NPDR or PDR, 67.1% [5.6%]; P = .01), decreased with increasing DR severity. These associations remained statistically significant even after correcting for age, signal strength index, spherical equivalent, duration of diabetes, type of diabetes, and correlation between eyes of the same patient. In eyes with PPL (143 [40.6%]), mean (SD) vessel density in the superficial capillary plexus (mild NPDR, 34.1% [4.1%]; moderate NPDR, 35.2% [4.1%]; severe NPDR or PDR, 36.0% [4.3%]; P = .42) and the deep capillary plexus (mild NPDR, 44.5% [1.7%]; moderate NPDR, 45.4% [1.4%]; severe NPDR or PDR, 44.9% [1.5%]; P = .81), as well as the mean (SD) choriocapillaris flow density (mild NPDR, 67.1% [5.6%]; moderate NPDR, 69.3% [4.6%]; severe NPDR or PDR, 68.3% [5.6%]; P = .49), did not appear to change with increasing DR severity. Conclusions and Relevance: These results suggest that central retinal vessel density is associated with DR severity in eyes without, but not with, PPL. These findings suggest a potential need to stratify future optical coherence tomography angiography studies of eyes with DR by the presence or absence of PPL. If DR onset and worsening are associated with the location of retinal nonperfusion, assessment of global retinal nonperfusion using widefield angiography may improve the ability to evaluate DR severity and risk of DR worsening over time.


Choroid/blood supply , Diabetic Retinopathy/diagnosis , Fluorescein Angiography/methods , Retinal Vessels/pathology , Tomography, Optical Coherence/methods , Cross-Sectional Studies , Female , Fundus Oculi , Humans , Male , Middle Aged , Reproducibility of Results , Retrospective Studies , Severity of Illness Index
17.
Invest Ophthalmol Vis Sci ; 61(10): 53, 2020 08 03.
Article En | MEDLINE | ID: mdl-32866267

Purpose: The purpose of this study was to evaluate differences in optical coherence tomography angiography (OCTA) metrics in the superficial (SCP), intermediate (ICP), and deep (DCP) vascular plexuses across diabetic retinopathy (DR) severity levels. Methods: This was a cross sectional observational retrospective chart review study. Eligible patients with diabetes who underwent same day RTVue XR Avanti OCTA, spectral-domain optical coherence tomography (SD-OCT), and 200-degree Optos ultrawide field color imaging. SCP, ICP, and DCP vessel density (VD) and vessel length density (VLD) were assessed using 3-D projection artifact removal software (PAROCTA) software. Results: Of 396 eyes (237 patients), 16.1% had no DR, 26.9% mild nonproliferative DR (NPDR), 21.1% moderate NPDR, 12.1% severe NPDR, 10.1% proliferative DR (PDR) without panretinal photocoagulation (PRP), and 13.4% PDR with PRP. When comparing mild NPDR to no DR eyes, ICP and DCP VD and VLD were significantly lower, but there was no difference for SCP metrics. In eyes with more severe DR, there were significant differences in SCP VD and VLD between DR severity levels (mild versus moderate NPDR: VD 35.45 ± 3.31 vs. 34.14 ± 3.38, P = 0.008 and VLD 17.59 ± 1.83 vs. 16.80 ± 1.83, P = 0.003; moderate versus severe NPDR: VLD 16.80 ± 1.83 vs. 15.79 ± 1.84, P = 0.019), but no significant differences in ICP or DCP. Conclusions: Although VD of each of the three individual layers decreases with increasing DR severity, DR severity has a substantially different effect on OCTA parameters within each layer. Vascular changes in eyes with no to early DR were present primarily in the deeper vascular layers, whereas in eyes with advanced DR the opposite was observed. This study highlights the effects of ICP and the importance of assessing SCP and DCP changes independently across each DR severity level.


Diabetic Retinopathy/pathology , Retinal Vessels/pathology , Cross-Sectional Studies , Diabetic Retinopathy/diagnostic imaging , Female , Fundus Oculi , Humans , Male , Middle Aged , Retinal Vessels/diagnostic imaging , Retrospective Studies , Severity of Illness Index , Tomography, Optical Coherence
18.
Transl Vis Sci Technol ; 9(8): 45, 2020 07.
Article En | MEDLINE | ID: mdl-32855891

Purpose: To assess grading reproducibility of disorganization of the retinal inner layers (DRIL) and other morphologic features of diabetic macular edema (DME) across spectral domain optical coherence tomography (SDOCT) instruments and scan types. Methods: A cross-sectional study enrolled participants with current or recent center-involved DME. In group A (27 eyes), we obtained two Cirrus scans (512 × 128 macular cube [Cube] and high-definition five-line raster [HD 5-Line]) and two Spectralis scans (high-resolution [HR] and high-speed [HS]). In group B, 26 eyes underwent HR scans and Optovue AngioVue (OP) 3 × 3-mm scans. All scans were graded for type and extent of DRIL, intraretinal cysts, cone outer segment tip visibility, and subretinal fluid (SRF). Results: In the total cohort, mean central subfield thickness was 342.9 ± 83.4 µm. Intraclass correlations were high for DRIL extent across the four different imaging settings (HR vs. HS, r = 0.93; HR vs. Cube, r = 0.84, HR vs. HD 5-Line, r = 0.76, HR vs. OP, r = 0.87) and ranged from good to excellent for intraretinal cyst and SRF area. There were significantly smaller mean normalized differences between HR/HS scans versus HR and all other scan modalities (HR/HS vs. HR/Cube, P = 0.02; HR/HD 5-Line, P = 0.0005; HR/OP, P < 0.0001). Conclusions: Our data suggest that the reproducibility for SDOCT parameters of DRIL and intraretinal cysts was high across all five SDOCT scan types; thus, evaluation of DRIL is feasible using multiple SDOCT models in eyes with DME. Translational Relevance: DME morphological changes can be evaluated on multiple SDOCT devices with good reproducibility, allowing clinicians and researchers flexibility in DME assessment for clinical care and research.


Diabetes Mellitus , Diabetic Retinopathy , Macular Edema , Cross-Sectional Studies , Diabetic Retinopathy/diagnosis , Fluorescein Angiography , Follow-Up Studies , Humans , Macular Edema/diagnostic imaging , Reproducibility of Results , Retrospective Studies , Tomography, Optical Coherence , Visual Acuity
19.
Transl Vis Sci Technol ; 9(7): 10, 2020 06.
Article En | MEDLINE | ID: mdl-32832217

Purpose: The purpose of this study was to assess how projection artifact removal (PAR) alters optical coherence tomography angiography (OCTA) assessment of superficial capillary plexus (SCP) and deep capillary plexus (DCP) in eyes of patients with diabetes. Methods: We acquired 3 × 3 mm scans with RTVue-XR Avanti (Optovue, Inc., Fremont, CA), which were analyzed with PAR software (PAROCTA) and without (non-PAROCTA). SCP, DCP, and full thickness retina vascular density (VD) and vessel linear density (VLD) were manually calculated using ImageJ (version 1.51). Adjusted flow index (AFI) was manually assessed for full thickness images. Results: Among 323 eyes of 194 patients (no diabetic retinopathy [DR]: 28 eyes; mild nonproliferative DR (NPDR): 96 eyes; moderate: 82 eyes; severe: 32 eyes; and proliferative DR [PDR]: 81 eyes), SCP VD and VLD were lower with PAROCTA than with non-PAROCTA only in eyes with moderate (VD: P = 0.017; VLD: P = 0.046), severe (P = 0.016; P = 0.009), and PDR (P < 0.001; P = 0.002). DCP VD and VLD were higher with PAROCTA as compared to non-PAROCTA only in eyes with no DR (VD and VLD: P < 0.001), mild (VD and VLD: P < 0.001), moderate (VD: P = 0.005; and VLD: P < 0.001), and severe (VD: P = 0.009; VLD: P < 0.001). Full thickness PAROCTA and non-PAROCTA VD and VLD differed only in eyes with no DR where PAROCTA estimates were higher (VD: P = 0.009; VLD: P = 0.02). PAROCTA AFI was lower than non-PAROCTA AFI for all DR severity levels (P < 0.001) except no DR. Conclusions: Although differential effects of PAROCTA software are expected on SCP versus DCP measurements, these findings also suggest an interaction between PAROCTA and DR severity on assessment of VD. Conclusions from previous studies that have not corrected VD with PAR software should be carefully reviewed with regard to the role of specific vascular layers in DR. Translational Relevance: Previous OCTA studies that have not corrected VD with PAR software should be carefully reviewed with regard to the role of individual vascular layers in differing severity levels of DR.


Diabetes Mellitus , Diabetic Retinopathy , Artifacts , Diabetic Retinopathy/diagnostic imaging , Fluorescein Angiography , Humans , Retinal Vessels/diagnostic imaging , Retrospective Studies , Tomography, Optical Coherence
20.
Semin Ophthalmol ; 35(1): 56-65, 2020 Jan 02.
Article En | MEDLINE | ID: mdl-32167854

The introduction of ultrawide field imaging has allowed the visualization of approximately 82% of the total retinal area compared to only 30% using 7-standard field Early Treatment Diabetic Retinopathy (ETDRS) photography. This substantially wider field of view, while useful in many retinal vascular diseases, is particularly important in diabetic retinopathy where eyes with predominantly peripheral lesions or PPL have been shown to have significantly greater progression rates compared to eyes without PPL. In telemedicine settings, ultrawide field imaging has substantially reduced image ungradable rates and increased rate of disease identification allowing care to be delivered more effectively. Furthermore, the use of ultrawide field fluorescein angiography allows the visualization of significantly more diabetic retinal lesions and allows more accurate quantification of total retinal nonperfusion, with potential implications in the management of diabetic retinopathy and diabetic macular edema. The focus of this paper is to review the current role of ultrawide field imaging in diabetic retinopathy and its possible future role in innovations for retinal image analysis such as artificial intelligence and vessel caliber measurements.


Artificial Intelligence , Diabetic Retinopathy/diagnosis , Fluorescein Angiography/methods , Retina/diagnostic imaging , Telemedicine/methods , Tomography, Optical Coherence/methods , Disease Progression , Humans
...